内化是什么意思| 什么叫相向而行| 医院dr检查是什么| 2003属什么| 脑血管狭窄吃什么药| 心电图窦性心律什么意思| 天梭手表什么档次| 头晕眼花是什么原因| 胃痛吃什么药效果好| 维生素c的作用是什么| 胃不好的人适合吃什么水果| 卵圆孔未闭是什么意思| 鼠的本命佛是什么佛| 红红的苹果像什么句子| 双肺纹理增多是什么意思严重吗| 均为是什么意思| 什么人不能吃马齿苋| 红玫瑰花语是什么意思| 7代表什么意思| 偏头痛是什么| 什么是玉石| 脚后跟疼吃什么药| 熬夜吃什么水果好| 四海扬名是什么生肖| 晚上吃什么有助于减肥| 狮子座女和什么座最配| 紫罗兰色是什么颜色| 骨髓抑制什么意思| 卜卜脆是什么意思| 水蚤吃什么| 江小白加雪碧什么意思| 胖大海和什么搭配最好| 吃什么可以让子宫内膜变薄| m k是什么牌子| 咨客是做什么的| 维多利亚是什么意思| sls是什么| 嘴巴下面长痘痘是什么原因| 兔子的眼睛为什么是红色的| 蛀虫指什么生肖| 足踝外科主要看什么| 舌头烧灼感是什么原因| 什么叫脂溢性脱发| 血糖仪什么牌子的好用又准确| 玉兰油属于什么档次| 送羊是什么意思| 12月25日什么星座| 野蛮生长是什么意思| 梦见下大雪是什么意思| 今天吃什么菜| 贞操锁是什么| 二月一日是什么星座| 为什么姓张的不用说免贵| 丑人多作怪什么意思| 观字五行属什么| 梦见吃葡萄是什么意思| 眼睛肿了是什么原因| 莲花与荷花有什么区别| 突然视力模糊是什么原因引起的| 什么是禽流感| tv是什么意思| 溶媒是什么| 农历闰六月有什么讲究| 来月经可以吃什么水果| 小便是红色的是什么原因男性| 月经量减少是什么原因| 五七是什么意思有什么讲究| 麝牛是什么动物| 甲状腺有什么危害| 五花八门是什么生肖| 夜尿频多吃什么药效果好| 北京户口有什么用| 电疗是什么| 茶色是什么颜色| 警察两杠一星是什么级别| 白带变多是什么原因| 亚克力是什么材质| 梦见洗鞋子是什么意思| 小孩腿疼膝盖疼可能是什么原因| 冰晶是什么| 孕妇吃核桃对胎儿有什么好处| 血管变窄吃什么能改善| 耳石症是什么原因| 尿液茶色是什么原因| 盆腔炎吃什么消炎药| 什么原因引起血糖高| 梦见自己出轨是什么意思| 甘油三酯高吃什么药好| 乳腺彩超能查出什么| 披萨用什么面粉| 喝什么能解酒| 上火了吃什么水果降火最快| 无以言表是什么意思| 姜太公钓鱼愿者上钩是什么意思| 复方血栓通片功效作用治疗什么病| 不行是什么意思| 什么的月光| bps是什么意思| 牛顿三大定律是什么| 日本牛郎是干什么的| 老炮是什么意思| 湿热吃什么食物好| 第一次怀孕有什么反应| 酒精过敏是什么症状| 巡礼是什么意思| 12月14是什么星座| 一生无虞是什么意思| 青稞是什么东西| 溜冰是什么意思| 女人辟邪带什么最好| 冬虫夏草有什么功效| 有什么有什么| 马是什么牌子的车| 出汗有异味是什么原因| 尿有泡沫是什么原因| 舌苔红是什么原因| gummy是什么意思| 69属什么| 吃什么长头发又密又多| 电灯是什么时候发明的| 镜子是用什么做的| yp什么意思| 笙字五行属什么| 什么是螨虫| 农历11月14日是什么星座| 什么的青蛙| 面霜是干什么用的| 肾动脉彩超主要查什么| 西施姓什么| 敛财什么意思| 双侧中耳乳突炎是什么意思| 什么会导致铅中毒| outlets是什么意思| 冲浪是什么意思| 头七烧什么| 大便成细条状是什么病| 高血糖可以吃什么水果| 暴饮暴食会得什么病| 特效是什么意思| 时光荏苒是什么意思| 什么人不能吃榴莲| 93鸡和94狗生什么宝宝| 武汉都有什么区| 胸闷气短吃什么特效药| 扑尔敏是什么药| 12颗珠子的手串什么意思| 哪吒他妈叫什么名字| 巴旦木是什么树的果实| 女人梦见猪是什么预兆| 办慢性病有什么好处| 白粉病用什么药| 风调雨顺的下联是什么| 幼对什么| 减肥喝什么茶好| 甲亢是什么原因引起的| 问其故的故是什么意思| 做梦梦见棺材和死人是什么意思| 英雄联盟msi是什么| 唯利是图是什么生肖| 花胶是什么鱼的鱼肚| 右冠优势型是什么意思| 女性得了性病有什么症状| 肠胃感冒吃什么药| kenwood是什么牌子| d2聚体高是什么意思| 芥末是什么| 塑料袋属于什么垃圾| 七八年属什么生肖| 阴道口出血是什么原因| 什么东西越洗越脏| 摆渡是什么意思| 恃宠而骄什么意思| 后卫是什么意思| 公历是什么意思| 公历年份是什么意思| 多才多艺是什么生肖| acth是什么| 孕妇不能吃什么| 35岁属相是什么生肖| 乙肝阻断针什么时候打| 纠察是什么意思| 八仙过海是什么生肖| 六月二十四是什么日子| 为什么医生不推荐特立帕肽呢| hca是什么意思| 大便黑色是什么原因| 梦见筷子是什么预兆| 肝区在什么位置| 梦见爸爸去世预兆什么| 秉承是什么意思| 乳头凹陷是什么原因| lomo卡是什么| 弱碱水是什么水| 小鬼是什么意思| 闷葫芦是什么意思| 改编是什么意思| 血稠有什么症状| 缺铁性贫血吃什么补血最快| 阳历10月是什么星座| 为什么我不快乐| 狗皮膏药什么意思| 喉咙痛吃什么水果好得最快| 哥哥的孩子叫我什么| 广州有什么好吃的| 母胎单身什么意思| 背包客是什么意思| 低血糖是什么症状| 早上七八点是什么时辰| 前是什么偏旁| 屁股上长痘痘是什么原因| 日本豆腐是用什么做的| 做hpv检查前要注意什么| 植物生长需要什么| 下面有异味是什么原因| 山竹什么味道| 555是什么烟| 黄什么鱼| 声音小是什么原因| 子宫肌瘤是什么原因引起的| 白气是什么物态变化| 为什么痣上面会长毛| 痰湿中阻吃什么中成药| 拉缸是什么意思| 什么是紫河车| 脚发痒是什么原因| 成都市市长是什么级别| 庆幸是什么意思| 气血不足是什么意思| 生意盎然什么意思| 鹰的天敌是什么动物| 慰安妇是什么意思| 刘备的马叫什么| nars属于什么档次| 身份证号码代表什么| 胸痛什么原因| 海棠花的花语是什么| 手脚经常发麻是什么原因| 胸膈痞闷是什么症状| 什么尾花| 输卵管堵塞吃什么药可以疏通| 猪蹄和什么一起炖好吃| hr是什么意思医学| sansay是什么牌子| 韩国烧酒什么味道| 抉择是什么意思| bally什么牌子| 什么血型是万能血型| 刚怀孕有什么症状| 偏光太阳镜是什么意思| 蛋白粉什么时候喝| 神父和修女是什么关系| 过敏是什么意思| 减肥晚上适合吃什么水果| 什么是根号| 古代的天花是现代的什么病| china的形容词是什么| 女人的排卵期是什么时候| 三观是什么意思| 脾肾亏虚的症状是什么| 为什么短信验证码收不到| 华为最新款手机是什么型号| 钾高吃什么可以降下来| 足及念什么| 护照免签是什么意思| 百度

INTERNET-DRAFT                                          L. Peter Deutsch
DEFLATE 1.3                                          Aladdin Enterprises
Expires: 26 Sep 1996                                         21 Mar 1996


        DEFLATE Compressed Data Format Specification version 1.3

File draft-deutsch-deflate-spec-03.txt

Status of this Memo

   This document is an Internet-Draft.  Internet-Drafts are working
   documents of the Internet Engineering Task Force (IETF), its areas,
   and its working groups.  Note that other groups may also distribute
   working documents as Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet- Drafts as reference
   material or to cite them other than as ``work in progress.''

   To learn the current status of any Internet-Draft, please check the
   ``1id-abstracts.txt'' listing contained in the Internet- Drafts
   Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
   munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
   ftp.isi.edu (US West Coast).

   Distribution of this memo is unlimited.

   A pointer to the latest version of this and related documentation in
   HTML format can be found at the URL
   <ftp:ftp.uu.net/pub/graphics/png/documents/zlib/zdoc-index.html>.

Notices

   Copyright (c) 1996 L. Peter Deutsch

   Permission is granted to copy and distribute this document for any
   purpose and without charge, including translations into other
   languages and incorporation into compilations, provided that the
   copyright notice and this notice are preserved, and that any
   substantive changes or deletions from the original are clearly
   marked.








Deutsch                                                        [Page  1]

INTERNET-DRAFTDEFLATE Compressed Data Format Specification   20 Mar 1996


Abstract

   This specification defines a lossless compressed data format that
   compresses data using a combination of the LZ77 algorithm and Huffman
   coding, with efficiency comparable to the best currently available
   general-purpose compression methods.  The data can be produced or
   consumed, even for an arbitrarily long sequentially presented input
   data stream, using only an a priori bounded amount of intermediate
   storage.  The format can be implemented readily in a manner not
   covered by patents.

Table of Contents

   1. Introduction ................................................... 2
      1.1. Purpose ................................................... 3
      1.2. Intended audience ......................................... 3
      1.3. Scope ..................................................... 3
      1.4. Compliance ................................................ 4
      1.5.  Definitions of terms and conventions used ................ 4
      1.6. Changes from previous versions ............................ 4
   2. Compressed representation overview ............................. 4
   3. Detailed specification ......................................... 5
      3.1. Overall conventions ....................................... 5
          3.1.1. Packing into bytes .................................. 5
      3.2. Compressed block format ................................... 6
          3.2.1. Synopsis of prefix and Huffman coding ............... 6
          3.2.2. Use of Huffman coding in the 'deflate' format ....... 7
          3.2.3. Details of block format ............................. 9
          3.2.4. Non-compressed blocks (BTYPE=00) ................... 10
          3.2.5. Compressed blocks (length and distance codes) ...... 11
          3.2.6. Compression with fixed Huffman codes (BTYPE=01) .... 11
          3.2.7. Compression with dynamic Huffman codes (BTYPE=10) .. 12
      3.3. Compliance ............................................... 13
   4. Compression algorithm details ................................. 14
   5. References .................................................... 15
   6. Security considerations ....................................... 15
   7. Source code ................................................... 15
   8. Acknowledgements .............................................. 16
   9. Author's address .............................................. 16










1. Introduction




Deutsch                                                        [Page  2]

INTERNET-DRAFTDEFLATE Compressed Data Format Specification   20 Mar 1996


   1.1. Purpose

      The purpose of this specification is to define a lossless
      compressed data format that:

          * Is independent of CPU type, operating system, file system,
            and character set, and hence can be used for interchange;
          * Can be produced or consumed, even for an arbitrarily long
            sequentially presented input data stream, using only an a
            priori bounded amount of intermediate storage, and hence can
            be used in data communications or similar structures such as
            Unix filters;
          * Compresses data with efficiency comparable to the best
            currently available general-purpose compression methods, and
            in particular considerably better than the 'compress'
            program;
          * Can be implemented readily in a manner not covered by
            patents, and hence can be practiced freely;
          * Is compatible with the file format produced by the current
            widely used gzip utility, in that conforming decompressors
            will be able to read data produced by the existing gzip
            compressor.

      The data format defined by this specification does not attempt to:

          * Allow random access to compressed data;
          * Compress specialized data (e.g., raster graphics) as well as
            the best currently available specialized algorithms.

      A simple counting argument shows that no lossless compression
      algorithm can compress every possible input data set.  For the
      format defined here, the worst case expansion is 5 bytes per 32K-
      byte block, i.e., a size increase of 0.015% for large data sets.
      English text usually compresses by a factor of 2.5 to 3;
      executable files usually compress somewhat less; graphical data
      such as raster images may compress much more.

   1.2. Intended audience

      This specification is intended for use by implementors of software
      to compress data into 'deflate' format and/or decompress data from
      'deflate' format.

      The text of the specification assumes a basic background in
      programming at the level of bits and other primitive data
      representations.  Familiarity with the technique of Huffman coding
      is helpful but not required.

   1.3. Scope

      The specification specifies a method for representing a sequence
      of bytes as a (usually shorter) sequence of bits, and a method for


Deutsch                                                        [Page  3]

INTERNET-DRAFTDEFLATE Compressed Data Format Specification   20 Mar 1996


      packing the latter bit sequence into bytes.

   1.4. Compliance

      Unless otherwise indicated below, a compliant decompressor must be
      able to accept and decompress any data set that conforms to all
      the specifications presented here; a compliant compressor must
      produce data sets that conform to all the specifications presented
      here.

   1.5.  Definitions of terms and conventions used

      Byte: 8 bits stored or transmitted as a unit (same as an octet).
      For this specification, a byte is exactly 8 bits, even on machines
      which store a character on a number of bits different from eight.
      See below, for the numbering of bits within a byte.

      String: a sequence of arbitrary bytes.

   1.6. Changes from previous versions

      There have been no technical changes to the deflate format since
      version 1.1 of this specification.  In version 1.2, some
      terminology was changed.  Version 1.3 is a conversion of the
      specification to Internet Draft style.

2. Compressed representation overview

   A compressed data set consists of a series of blocks, corresponding
   to successive blocks of input data.  The block sizes are arbitrary,
   except that non-compressible blocks are limited to 65,535 bytes.

   Each block is compressed using a combination of the LZ77 algorithm
   and Huffman coding. The Huffman trees for each block are independant
   of those for previous or subsequent blocks; the LZ77 algorithm may
   use a reference to a duplicated string occurring in a previous block,
   up to 32K input bytes before.

   Each block consists of two parts: a pair of Huffman code trees that
   describe the representation of the compressed data part, and a
   compressed data part.  (The Huffman trees themselves are compressed
   using Huffman encoding.)  The compressed data consists of a series of
   elements of two types: literal bytes (of strings that have not been
   detected as duplicated within the previous 32K input bytes), and
   pointers to duplicated strings, where a pointer is represented as a
   pair <length, backward distance>.  The representation used in the
   'deflate' format limits distances to 32K bytes and lengths to 258
   bytes, but does not limit the size of a block, except for
   uncompressible blocks, which are limited as noted above.

   Each type of value (literals, distances, and lengths) in the
   compressed data is represented using a Huffman code, using one code


Deutsch                                                        [Page  4]

INTERNET-DRAFTDEFLATE Compressed Data Format Specification   20 Mar 1996


   tree for literals and lengths and a separate code tree for distances.
   The code trees for each block appear in a compact form just before
   the compressed data for that block.

3. Detailed specification

   3.1. Overall conventions In the diagrams below, a box like this:

         +---+
         |   | <-- the vertical bars might be missing
         +---+

      represents one byte; a box like this:

         +==============+
         |              |
         +==============+

      represents a variable number of bytes.

      Bytes stored within a computer do not have a 'bit order', since
      they are always treated as a unit.  However, a byte considered as
      an integer between 0 and 255 does have a most- and least-
      significant bit, and since we write numbers with the most-
      significant digit on the left, we also write bytes with the most-
      significant bit on the left.  In the diagrams below, we number the
      bits of a byte so that bit 0 is the least-significant bit, i.e.,
      the bits are numbered:

         +--------+
         |76543210|
         +--------+

      Within a computer, a number may occupy multiple bytes.  All
      multi-byte numbers in the format described here are stored with
      the least-significant byte first (at the lower memory address).
      For example, the decimal number 520 is stored as:

             0        1
         +--------+--------+
         |00001000|00000010|
         +--------+--------+
          ^        ^
          |        |
          |        + more significant byte = 2 x 256
          + less significant byte = 8

      3.1.1. Packing into bytes

         This document does not address the issue of the order in which
         bits of a byte are transmitted on a bit-sequential medium,
         since the final data format described here is byte- rather than


Deutsch                                                        [Page  5]

INTERNET-DRAFTDEFLATE Compressed Data Format Specification   20 Mar 1996


         bit-oriented.  However, we describe the compressed block format
         in below, as a sequence of data elements of various bit
         lengths, not a sequence of bytes.  We must therefore specify
         how to pack these data elements into bytes to form the final
         compressed byte sequence:

             * Data elements are packed into bytes in order of
               increasing bit number within the byte, i.e., starting
               with the least- significant bit of the byte.
             * Data elements other than Huffman codes are packed
               starting with the least-significant bit of the data
               element.
             * Huffman codes are packed starting with the most-
               significant bit of the code.

         In other words, if one were to print out the compressed data as
         a sequence of bytes, starting with the first byte at the
         *right* margin and proceeding to the *left*, with the most-
         significant bit of each byte on the left as usual, one would be
         able to parse the result from right to left, with fixed-width
         elements in the correct MSB-to-LSB order and Huffman codes in
         bit-reversed order (i.e., with the first bit of the code in the
         relative LSB position).

   3.2. Compressed block format

      3.2.1. Synopsis of prefix and Huffman coding

         Prefix coding represents symbols from an a priori known
         alphabet by bit sequences (codes), one code for each symbol, in
         a manner such that different symbols may be represented by bit
         sequences of different lengths, but a parser can always parse
         an encoded string unambiguously symbol-by-symbol.

         We define a prefix code in terms of a binary tree in which the
         two edges descending from each non-leaf node are labeled 0 and
         1 and in which the leaf nodes correspond one-for-one with (are
         labeled with) the symbols of the alphabet; then the code for a
         symbol is the sequence of 0's and 1's on the edges leading from
         the root to the leaf labeled with that symbol.  For example:

                          /\              Symbol    Code
                         0  1             ------    ----
                        /    \                A      00
                       /\     B               B       1
                      0  1                    C     011
                     /    \                   D     010
                    A     /\
                         0  1
                        /    \
                       D      C



Deutsch                                                        [Page  6]

INTERNET-DRAFTDEFLATE Compressed Data Format Specification   20 Mar 1996


         A parser can decode the next symbol from an encoded input
         stream by walking down the tree from the root, at each step
         choosing the edge corresponding to the next input bit.

         Given an alphabet with known symbol frequencies, the Huffman
         algorithm allows the construction of an optimal prefix code
         (one which represents strings with those symbol frequencies
         using the fewest bits of any possible prefix codes for that
         alphabet).  Such a code is called a Huffman code.  (See
         reference [1] in Chapter 5, references for additional
         information on Huffman codes.)

         Note that in the 'deflate' format, the Huffman codes for the
         various alphabets must not exceed certain maximum code lengths.
         This constraint complicates the algorithm for computing code
         lengths from symbol frequencies.  Again, see Chapter 5,
         references for details.

      3.2.2. Use of Huffman coding in the 'deflate' format

         The Huffman codes used for each alphabet in the 'deflate'
         format have two additional rules:

             * All codes of a given bit length have lexicographically
               consecutive values, in the same order as the symbols they
               represent;

             * Shorter codes lexicographically precede longer codes.

         We could recode the example above to follow this rule as
         follows, assuming that the order of the alphabet is ABCD:

            Symbol  Code
            ------  ----
            A       10
            B       0
            C       110
            D       111

         I.e., 0 precedes 10 which precedes 11x, and 110 and 111 are
         lexicographically consecutive.

         Given this rule, we can define the Huffman code for an alphabet
         just by giving the bit lengths of the codes for each symbol of
         the alphabet in order; this is sufficient to determine the
         actual codes.  In our example, the code is completely defined
         by the sequence of bit lengths (2, 1, 3, 3).  The following
         algorithm generates the codes as integers, intended to be read
         from most- to least-significant bit.  The code lengths are
         initially in tree[I].Len; the codes are produced in
         tree[I].Code.



Deutsch                                                        [Page  7]

INTERNET-DRAFTDEFLATE Compressed Data Format Specification   20 Mar 1996


         1)  Count the number of codes for each code length.  Let
         bl_count[N] be the number of codes of length N, N >= 1.

         2)  Find the numerical value of the smallest code for each code
         length:

                code = 0;
                bl_count[0] = 0;
                for (bits = 1; bits <= MAX_BITS; bits++) {
                    code = (code + bl_count[bits-1]) << 1;
                    next_code[bits] = code;
                }

         3)  Assign numerical values to all codes, using consecutive
         values for all codes of the same length with the base values
         determined at step 2. Codes that are never used (which have a
         bit length of zero) must not be assigned a value.

                for (n = 0;  n <= max_code; n++) {
                    len = tree[n].Len;
                    if (len != 0) {
                        tree[n].Code = next_code[len];
                        next_code[len]++;
                    }
                }

         Example:

         Consider the alphabet ABCDEFGH, with bit lengths (3, 3, 3, 3,
         3, 2, 4, 4).  After step 1, we have:

            N      bl_count[N]
            -      -----------
            2      1
            3      5
            4      2

         Step 2 computes the following next_code values:

            N      next_code[N]
            -      ------------
            1      0
            2      0
            3      2
            4      14

         Step 3 produces the following code values:







Deutsch                                                        [Page  8]

INTERNET-DRAFTDEFLATE Compressed Data Format Specification   20 Mar 1996


            Symbol Length   Code
            ------ ------   ----
            A       3        010
            B       3        011
            C       3        100
            D       3        101
            E       3        110
            F       2         00
            G       4       1110
            H       4       1111

      3.2.3. Details of block format

         Each block of compressed data begins with 3 header bits
         containing the following data:

            first bit       BFINAL
            next 2 bits     BTYPE

         Note that the header bits do not necessarily begin on a byte
         boundary, since a block does not necessarily occupy an integral
         number of bytes.

         BFINAL is set iff this is the last block of the data set.

         BTYPE specifies how the data are compressed, as follows:

            00 - no compression
            01 - compressed with fixed Huffman codes
            10 - compressed with dynamic Huffman codes
            11 - reserved (error)

         The only difference between the two compressed cases is how the
         Huffman codes for the literal/length and distance alphabets are
         defined.

         In all cases, the decoding algorithm for the actual data is as
         follows:
















Deutsch                                                        [Page  9]

INTERNET-DRAFTDEFLATE Compressed Data Format Specification   20 Mar 1996


            do
               read block header from input stream.
               if stored with no compression
                  skip any remaining bits in current partially
                     processed byte
                  read LEN and NLEN (see next section)
                  copy LEN bytes of data to output
               otherwise
                  if compressed with dynamic Huffman codes
                     read representation of code trees (see
                        subsection below)
                  loop (until end of block code recognized)
                     decode literal/length value from input stream
                     if value < 256
                        copy value (literal byte) to output stream
                     otherwise
                        if value = end of block (256)
                           break from loop
                        otherwise (value = 257..285)
                           decode distance from input stream

                           move backwards distance bytes in the output
                           stream, and copy length bytes from this
                           position to the output stream.
                  end loop
            while not last block

         Note that a duplicated string reference may refer to a string
         in a previous block; i.e., the backward distance may cross one
         or more block boundaries.  However a distance cannot refer past
         the beginning of the output stream.  (An application using a
         preset dictionary might discard part of the output stream; a
         distance can refer to that part of the output stream anyway)
         Note also that the referenced string may overlap the current
         position; for example, if the last 2 bytes decoded have values
         X and Y, a string reference with <length = 5, distance = 2>
         adds X,Y,X,Y,X to the output stream.

         We now specify each compression method in turn.

      3.2.4. Non-compressed blocks (BTYPE=00)

         Any bits of input up to the next byte boundary are ignored.
         The rest of the block consists of the following information:

              0   1   2   3   4...
            +---+---+---+---+=================================+
            |  LEN  | NLEN  |... LEN bytes of literal data...|
            +---+---+---+---+=================================+

         LEN is the number of data bytes in the block.  NLEN is the
         one's complement of LEN.


Deutsch                                                       [Page  10]

INTERNET-DRAFTDEFLATE Compressed Data Format Specification   20 Mar 1996


      3.2.5. Compressed blocks (length and distance codes)

         As noted above, encoded data blocks in the 'deflate' format
         consist of sequences of symbols drawn from three conceptually
         distinct alphabets: either literal bytes, from the alphabet of
         byte values (0..255), or <length, backward distance> pairs,
         where the length is drawn from (3..258) and the distance is
         drawn from (1..32,768).  In fact, the literal and length
         alphabets are merged into a single alphabet (0..285), where
         values 0..255 represent literal bytes, the value 256 indicates
         end-of-block, and values 257..285 represent length codes
         (possibly in conjunction with extra bits following the symbol
         code) as follows:

                 Extra               Extra               Extra
            Code Bits Length(s) Code Bits Lengths   Code Bits Length(s)
            ---- ---- ------     ---- ---- -------   ---- ---- -------
             257   0     3       267   1   15,16     277   4   67-82
             258   0     4       268   1   17,18     278   4   83-98
             259   0     5       269   2   19-22     279   4   99-114
             260   0     6       270   2   23-26     280   4  115-130
             261   0     7       271   2   27-30     281   5  131-162
             262   0     8       272   2   31-34     282   5  163-194
             263   0     9       273   3   35-42     283   5  195-226
             264   0    10       274   3   43-50     284   5  227-257
             265   1  11,12      275   3   51-58     285   0    258
             266   1  13,14      276   3   59-66

         The extra bits should be interpreted as a machine integer
         stored with the most-significant bit first, e.g., bits 1110
         represent the value 14.

                  Extra           Extra               Extra
             Code Bits Dist  Code Bits   Dist     Code Bits Distance
             ---- ---- ----  ---- ----  ------    ---- ---- --------
               0   0    1     10   4     33-48    20    9   1025-1536
               1   0    2     11   4     49-64    21    9   1537-2048
               2   0    3     12   5     65-96    22   10   2049-3072
               3   0    4     13   5     97-128   23   10   3073-4096
               4   1   5,6    14   6    129-192   24   11   4097-6144
               5   1   7,8    15   6    193-256   25   11   6145-8192
               6   2   9-12   16   7    257-384   26   12  8193-12288
               7   2  13-16   17   7    385-512   27   12 12289-16384
               8   3  17-24   18   8    513-768   28   13 16385-24576
               9   3  25-32   19   8   769-1024   29   13 24577-32768

      3.2.6. Compression with fixed Huffman codes (BTYPE=01)

         The Huffman codes for the two alphabets are fixed, and are not
         represented explicitly in the data.  The Huffman code lengths
         for the literal/length alphabet are:



Deutsch                                                       [Page  11]

INTERNET-DRAFTDEFLATE Compressed Data Format Specification   20 Mar 1996


                   Lit Value    Bits        Codes
                   ---------    ----        -----
                     0 - 143     8          00110000 through
                                            10111111
                   144 - 255     9          110010000 through
                                            111111111
                   256 - 279     7          0000000 through
                                            0010111
                   280 - 287     8          11000000 through
                                            11000111

         The code lengths are sufficient to generate the actual codes,
         as described above; we show the codes in the table for added
         clarity.  Literal/length values 286-287 will never actually
         occur in the compressed data, but participate in the code
         construction.

         Distance codes 0-31 are represented by (fixed-length) 5-bit
         codes, with possible additional bits as shown in the table
         shown in Paragraph 3.2.5, above.  Note that distance codes 30-
         31 will never actually occur in the compressed data.

      3.2.7. Compression with dynamic Huffman codes (BTYPE=10)

         The Huffman codes for the two alphabets appear in the block
         immediately after the header bits and before the actual
         compressed data, first the literal/length code and then the
         distance code.  Each code is defined by a sequence of code
         lengths, as discussed in Paragraph 3.2.2, above.  For even
         greater compactness, the code length sequences themselves are
         compressed using a Huffman code.  The alphabet for code lengths
         is as follows:

               0 - 15: Represent code lengths of 0 - 15
                   16: Copy the previous code length 3 - 6 times.
                       The next 2 bits indicate repeat length
                             (0 = 3, ... , 3 = 6)
                          Example:  Codes 8, 16 (+2 bits 11),
                                    16 (+2 bits 10) will expand to
                                    12 code lengths of 8 (1 + 6 + 5)
                   17: Repeat a code length of 0 for 3 - 10 times.
                       (3 bits of length)
                   18: Repeat a code length of 0 for 11 - 138 times
                       (7 bits of length)

         A code length of 0 indicates that the corresponding symbol in
         the literal/length or distance alphabet will not occur in the
         block, and should not participate in the Huffman code
         construction algorithm given earlier.  If only one distance
         code is used, it is encoded using one bit, not zero bits; in
         this case there is a single code length of one, with one unused
         code.  One distance code of zero bits means that there are no


Deutsch                                                       [Page  12]

INTERNET-DRAFTDEFLATE Compressed Data Format Specification   20 Mar 1996


         distance codes used at all (the data is all literals).

         We can now define the format of the block:

               5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286)
               5 Bits: HDIST, # of Distance codes - 1        (1 - 32)
               4 Bits: HCLEN, # of Code Length codes - 4     (4 - 19)

               (HCLEN + 4) x 3 bits: code lengths for the code length
                  alphabet given just above, in the order: 16, 17, 18,
                  0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15

                  These code lengths are interpreted as 3-bit integers
                  (0-7); as above, a code length of 0 means the
                  corresponding symbol (literal/length or distance code
                  length) is not used.

               HLIT + 257 code lengths for the literal/length alphabet,
                  encoded using the code length Huffman code

               HDIST + 1 code lengths for the distance alphabet,
                  encoded using the code length Huffman code

               The actual compressed data of the block,
                  encoded using the literal/length and distance Huffman
                  codes

               The literal/length symbol 256 (end of data),
                  encoded using the literal/length Huffman code

         The code length repeat codes can cross from HLIT + 257 to the
         HDIST + 1 code lengths.  In other words, all code lengths form
         a single sequence of HLIT + HDIST + 258 values.

   3.3. Compliance

      A compressor may limit further the ranges of values specified in
      the previous section and still be compliant; for example, it may
      limit the range of backward pointers to some value smaller than
      32K.  Similarly, a compressor may limit the size of blocks so that
      a compressible block fits in memory.

      A compliant decompressor must accept the full range of possible
      values defined in the previous section, and must accept blocks of
      arbitrary size.









Deutsch                                                       [Page  13]

INTERNET-DRAFTDEFLATE Compressed Data Format Specification   20 Mar 1996


4. Compression algorithm details

   While it is the intent of this document to define the 'deflate'
   compressed data format without reference to any particular
   compression algorithm, the format is related to the compressed
   formats produced by LZ77 (Lempel-Ziv 1977, see reference [2] below);
   since many variations of LZ77 are patented, it is strongly
   recommended that the implementor of a compressor follow the general
   algorithm presented here, which is known not to be patented per se.
   The material in this section is not part of the definition of the
   specification per se, and a compressor need not follow it in order to
   be compliant.

   The compressor terminates a block when it determines that starting a
   new block with fresh trees would be useful, or when the block size
   fills up the compressor's block buffer.

   The compressor uses a chained hash table to find duplicated strings,
   using a hash function that operates on 3-byte sequences.  At any
   given point during compression, let XYZ be the next 3 input bytes to
   be examined (not necessarily all different, of course).  First, the
   compressor examines the hash chain for XYZ.  If the chain is empty,
   the compressor simply writes out X as a literal byte and advances one
   byte in the input.  If the hash chain is not empty, indicating that
   the sequence XYZ (or, if we are unlucky, some other 3 bytes with the
   same hash function value) has occurred recently, the compressor
   compares all strings on the XYZ hash chain with the actual input data
   sequence starting at the current point, and selects the longest
   match.

   The compressor searches the hash chains starting with the most recent
   strings, to favor small distances and thus take advantage of the
   Huffman encoding.  The hash chains are singly linked. There are no
   deletions from the hash chains; the algorithm simply discards matches
   that are too old.  To avoid a worst-case situation, very long hash
   chains are arbitrarily truncated at a certain length, determined by a
   run-time parameter.

   To improve overall compression, the compressor optionally defers the
   selection of matches ("lazy matching"): after a match of length N has
   been found, the compressor searches for a longer match starting at
   the next input byte.  If it finds a longer match, it truncates the
   previous match to a length of one (thus producing a single literal
   byte) and then emits the longer match.  Otherwise, it emits the
   original match, and, as described above, advances N bytes before
   continuing.

   Run-time parameters also control this "lazy match" procedure.  If
   compression ratio is most important, the compressor attempts a
   complete second search regardless of the length of the first match.
   In the normal case, if the current match is "long enough", the
   compressor reduces the search for a longer match, thus speeding up


Deutsch                                                       [Page  14]

INTERNET-DRAFTDEFLATE Compressed Data Format Specification   20 Mar 1996


   the process.  If speed is most important, the compressor inserts new
   strings in the hash table only when no match was found, or when the
   match is not "too long".  This degrades the compression ratio but
   saves time since there are both fewer insertions and fewer searches.

5. References

   [1] Huffman, D. A., "A Method for the Construction of Minimum
       Redundancy Codes", Proceedings of the Institute of Radio
       Engineers, September 1952, Volume 40, Number 9, pp. 1098-1101.

   [2] Ziv J., Lempel A., "A Universal Algorithm for Sequential Data
       Compression", IEEE Transactions on Information Theory, Vol. 23,
       No. 3, pp. 337-343.

   [3] Gailly, J.-L., and Adler, M., zlib documentation and sources,
       available in ftp.uu.net:/pub/archiving/zip/doc/zlib*

   [4] Gailly, J.-L., and Adler, M., gzip documentation and sources,
       available in prep.ai.mit.edu:/pub/gnu/gzip-*.tar

   [5] Schwartz, E. S., and Kallick, B. "Generating a canonical prefix
       encoding." Comm. ACM, 7,3 (Mar. 1964), pp. 166-169.

   [6] "Efficient decoding of prefix codes", Hirschberg and Lelewer,
       Comm. ACM, 33,4, April 1990, pp. 449-459.

6. Security considerations

   Any data compression method involves the reduction of redundancy in
   the data.  Consequently, any corruption of the data is likely to have
   severe effects and be difficult to correct.  Uncompressed text, on
   the other hand, will probably still be readable despite the presence
   of some corrupted bytes.

   It is recommended that systems using this data format provide some
   means of validating the integrity of the compressed data.  See
   reference [3], for example.

7. Source code

   Source code for a C language implementation of a 'deflate' compliant
   compressor and decompressor is available within the zlib package at
   ftp.uu.net:/pub/archiving/zip/zlib/zlib*.










Deutsch                                                       [Page  15]

INTERNET-DRAFTDEFLATE Compressed Data Format Specification   20 Mar 1996


8. Acknowledgements

   Trademarks cited in this document are the property of their
   respective owners.

   Phil Katz designed the deflate format.  Jean-Loup Gailly and Mark
   Adler wrote the related software described in this specification.
   Glenn Randers-Pehrson converted this document to Internet Draft and
   HTML format.

9. Author's address

   L. Peter Deutsch

      Aladdin Enterprises
      203 Santa Margarita Ave.
      Menlo Park, CA 94025

      Phone: (415) 322-0103 (AM only)
      FAX:   (415) 322-1734
      EMail: <ghost@aladdin.com>

   Questions about the technical content of this specification can be
   sent by email to

      Jean-loup Gailly <gzip@prep.ai.mit.edu> and
      Mark Adler <madler@alumni.caltech.edu>

   Editorial comments on this specification can be sent by email to

      L. Peter Deutsch <ghost@aladdin.com> and
      Glenn Randers-Pehrson <randeg@alumni.rpi.edu>






















Deutsch                                                       [Page  16]
喉咙疼痛吃什么药效果最好 周长是什么 酒糟是什么东西 阴道疼痛什么原因 笏是什么意思
贫血吃什么补的快 哥文花园女装什么档次 痤疮用什么药治最好效果最快 夏天做什么菜 眼睛出血是什么原因
男女更年期分别在什么年龄 鳞状细胞是什么意思 不解之谜的意思是什么 苦瓜有什么作用 from是什么意思
一比吊糟什么意思 预防中暑喝什么水 抑制什么意思 孕妇吃什么好 蟑螂喜欢吃什么东西
唾液酸偏低意味什么hcv9jop1ns6r.cn 助产学出来是干什么的hcv8jop7ns0r.cn 女性气血不足吃什么调理hcv7jop4ns6r.cn 肥牛是什么肉hcv7jop9ns7r.cn 肝功能异常是什么意思hcv9jop7ns2r.cn
菊花长什么样hcv8jop0ns9r.cn 脚麻是什么原因造成的xianpinbao.com 8月23是什么星座的hcv9jop3ns9r.cn vjc是什么品牌hcv8jop0ns4r.cn 什么的大山hcv9jop4ns6r.cn
花蛤不能和什么一起吃hcv9jop4ns8r.cn 脂肪瘤看什么科hcv7jop6ns9r.cn 火供是什么意思hcv7jop6ns2r.cn 高铁与动车的区别是什么hcv8jop4ns3r.cn 夏季摆摊卖什么好hcv9jop8ns0r.cn
吃什么补充维生素dhcv9jop6ns5r.cn 吃生红枣有什么好处hcv9jop4ns5r.cn 8月底是什么星座hcv8jop9ns0r.cn 酒酿是什么wuhaiwuya.com 水是什么生肖hcv9jop2ns7r.cn
百度